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J. Phys. A: Math. Gen. 20 (1987) L929-L933. Printed in the UK 

LElTER TO THE EDITOR 

On some exact solutions of the three-dimensional non-linear 
Schrodinger equation 

W I Fushchich and N I Serov 
Mathematical Institute, Repin Street 3, Kiev, USSR 

Received 7 July 1987 

Abstract. Some exact solutions of the three-dimensional non-linear Schrodinger equation 
are found. The formulae for generating solutions of the Schrodinger-invariant equations 
are adduced. 

The linear heat equation and its complex generalisation, i.e. the Schrodinger equation 
~ 

(p0- ~ 2 , / 2 m ) u  = O  Po = i alax ,  Pa = -i a/&,  a = 1 , 3  (1) 

where 

U = u ( x , ,  x )  xo= t x = ( x , ,  x2,  X J  E R3 

and m is the particle mass, is invariant under the generalised Galilei group G2( l ,  3). 
The basis elements of the Lie algebra AG,( 1 ,3 )  have the following form: 

Po = i d/axo P, = -i alax ,  Jab = x,Ph - XhP, (2) 

G, = xoP, + mx, I = U a / a u  a, b=- (3) 

D = 2 xo P,, - XP + ;i (4) 

A = xo( xo Po - xP + si) + f mx' . ( 5 )  

The same algebra for the one-dimensional equation had been found over a hundred 
years ago by S Lie (Lie 1881). For the three-dimensional equation (1) this algebra 
had been found by Hagen (1972) and Niederer (1972) (see also Fushchich and Nikitin 
(1981, 1983)). The elements D and A generate the scale and projective transformations 
respectively. We denote the group generated by operators (2)-(4) and its Lie algebra 
by symbols G I ( l ,  3) and A G , ( l ,  3). The group and the algebra generated by ( 2 ) - ( 5 )  
are denoted as G2( 1 ,3 )  and AG2(1, 3). 

We now consider the following non-linear generalisation of (1): 

( P o - P i / 2 m ) u + F ( x ,  U ,  u * ) = O  ( 6 )  

where F is an arbitrary differentiable function. To construct the families of exact 
solutions of ( 6 )  we have to know the symmetry of (6) which obviously depends on 
the structure of the non-linearity. 
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Theorem. Equation (6) is invariant under the following algebras: 

AG(1,3) iff F =  d(lUl)U (7) 

AGi(1,3) iff F = A I U / ~ U  (8) 

where 4 is an arbitrary smooth function, and 

where A, k are arbitrary parameters, the operator of scale transformations D having 
the form D = xoPo - xP + 2i/ k, k # 0, and 

AG,(1,3) iff F = A ( u ~ ~ ” ’ u  (9) 

where n = 3 is the number of spatial variables in the Schrodinger equation (Fushchich 
1981, Fushchich and Moskaliuk 1981). 

To give the proof of the theorem, which we omit because of its clumsiness, it is 
necessary to apply the Lie method to (6). The detailed account of this method is given 
by Ovsyannikov (1978) and Bluman and Cole (1974). We can make sure that (6) with 
non-linearities (7)-(9) admits the groups G, GI and G2 by direct verification. 

Later on we shall construct the exact solutions of the Schrodinger equation with 
non-linearity (9), i.e. 

(Po- P;/2m)u + A ( u ( ~ ’ ~ u  = 0. (10) 

It follows from the theorem that only the equation with fractional non-linearity is 

Following Fushchich (1981) we seek solutions of (10) with the help of the ansatz 

( 1 1 )  

where cp is the function to calculate. This function depends only on three invariant 
variables wl, o2 and o3 being the first integrals of the Euler-Lagrange system of 
equations: 

invariant under the group G,( 1,3) .  

U ( X )  =f(x)cp(w, 9 w2, w3) 

where to, t’, t2, 5’ and 7 are coordinates of the infinitesimal operator of the group 
G2( 1,3) ,  i.e. the following functions: 

5°=ax~+2bxo+do  

tj = (ax, + b ) ~  + gxo + (Y x x + d 

7 = -[Im($u2+gx)+&axo+ b ) ] u  

where a, b, g, a, do and d are parameters of the group G,( 1,3) .  
Functions f (x)  also are found from the system (12). The method of seeking f (x)  

and variables w is given in more detail in Fushchich (1981) and Fushchich and Serov 
(1983). 

Ansatz ( 1  1 )  reduces (10) to the equations for function cp which depends only on 
three variables U , ,  w 2  and w 3 .  Thus to construct solutions of (10) using ansatz ( 1 1 )  it 
is necessary to have the explicit form of the function f (x)  and the new invariant 
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variables w l ,  w 2  and w 3 .  Not going into details we write them. Depending on relations 
between parameters of the group G2( 1,3) there are nine sets of f (x)  and w(x):  

f (x )  = (1 

w ,  =(ffx)(l -x;)-"2 

exp[tim xox2/(1 -xi)]  

w 2  = x2( 1 - xi)-' 

w 3  = tanh-' xo + tan-'(px/ yx)  

f (x)  = xi3/' exp(-ti x'xi') 

0' = ( f f X ) X i '  

w 3  = x i '  + tan-'(px/yx) 

f (x)  = (1 + X;)-3l4 

0 2  = X 2 X i 2  

x exp( - 4im xox2( 1 + xi)-') 

w ,  = (ffx)( 1 + 
w3 = -tan-' x,+tan-'(px/ax) 

f (x)  = x;314 U ' =  (ffx)x,"2 

0 2  = x2x,' 

w 3  = -In xo+tan-'(px/yx) 

f( x)  = X,3l4 

w2 = (px)x,'/* 

f (x)  = 1 U ' =  ffx 

w 2  = x2 

f ( x ) = 1  w1= ffx w 2  = x2 

w2 = x2( 1 + x;)-' 

0' = (ffx)x,'/2 

w3 = (yx)x;"* 

w 3  = -xo+tan-'(px/yx) 

w3 = xg 

f( x)  = exp( - i im ax/xo) 

w1= ffx + xopx w2 = ffx + xoyx 

w3 = xg 

f ( x )  = 1 U '  =ffx 

w2 = p x  w3 = xo 

where a, p, y are constant vectors satisfying the conditions 

ff2=p2= y 2 =  1 a/3 =/3y = y a  = 0. 
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We adduce the explicit form of the reduced equations for the function (P, obtained 
from ansatz (1  1) in all nine cases: 

(Pa = asolawu Qah = a2cp/awa d u b  a, b =U. 
We did not succeed in finding the exact solutions of all of the reduced equations. 
However, some of them had been solved. Let us write the final form of several exact 
solutions of (10). 

(13) u ( x )  = ( I  - ~ $ ” ~ e x p [ + i m x ~ ( 1  -xo)-’I 21. 

u(x)  = (coxo-cx)-3’2 exp{-$mx2x,’} (14) 

u(x)  = exp[-tim(x2-rx)x,’] r2 = -8Afm.  (15) 

u ( x )  = X ~ ~ ’ ~ ( P ( W , )  exp(-:imx2xi1) w , = a ! x f x ,  (17 )  

A = 2 ’  

where co, c = (c,, c 2 ,  c 3 )  are arbitrary constants, satisfying the condition c2 =:Am. 

u(x)  =    AX^)-^'^ exp(-$m x2xOl). (16) 

where function cp(wl) is defined by the elliptic integral 1; dT(k, + T ’ O ’ ~ ) - ’ ’ ~  = ( :Am)”’(wl  + k2) (18) 

where k,, k2 are arbitrary constants. 

u(x) = xi3’2 exp(-fim x2x;’)cp(w2) 

2w2cp22 + 3(P2 - hmQ7’3 = 0. 

u(x) = x,3’4cp(w1) 0, = (rux)x,”2 (21) 

w2 = x2 f xo (19) 

(20) 

where function cp(w2) is the solution of the Emden-Fauler equation 

where function cp(wl) is defined by elliptic integral (18). 
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(22) 

where cp(w2) is the solution of (20). 

u(x)  = ( C , / ~ A ) ” ~ X ; ’ / ~  e~p(ic ,x;’ /~-$m cx/xo) 

where c’ = 1 and c, = constant. 

u(x)  = ( c ~ / A ) ~ ’ ~  exp(icoxo) 

u(x)  = (A2xo)-3’4 exp( -iA,A2(A2x,)-’/4) 

where A = $ ( A ,  +iAJ and A , ,  A 2  are arbitrary real constants 

u(x)  = (cx)-3/2 c2 = 15 m. (26) 

Formulae (13)-(26) give multiparameter families of exact solutions of the non-linear 
Schrodinger equation (IO).  Some of them are of non-perturbative type due to a 
singularity with respect to the coupling constant A. Obtained solutions may be used 
in quantum field theory, and in many non-linear problems of solid state and plasma 
physics. 

In  conclusion we adduce the formulae of extension of solutions of (10). If U = u, (x)  
is a given solution of (10) then the new solutions u 2 ,  u3 may be found by formulae 

u2 = u,(x,, x s  ux,) exp[im($u’x,+ ox)] 

where a, U are arbitrary constants. These formulae follow from the fact that (10) admits 
both groups G( 1,3) and G2(  1,3). 
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